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Abstract
This work provides a quaternionic representation for real symplectic matrices
in dimension four, analogous to that for the orthogonal group. This is achieved
by characterizing positive definite symplectic matrices via quaternions. It
also provides a technique to compute the polar decomposition for Sp(4, R)

which requires no diagonalization, but relies only on the solution of a 2 × 2
linear system. This constructive technique to compute the ‘non-compact
portion’ of Sp(4, R) is then used to compute the smallest eigenvalue of the
noise (covariance) matrix of the so-called Gaussian two-mode systems. Other
applications where this non-compact portion is relevant are also discussed.

PACS numbers: 03.65.Fd, 02.10.Yn, 02.10.Hh

1. Introduction

The most important groups in physics are, arguably, the rotation and the symplectic groups
[2, 8]. In particular, the symplectic group is central to classical mechanics [16], to classical and
quantum optics [2], quantum mechanics and quantum information processing [5]. Therefore,
having as many parametrizations of these groups as possible is desirable.

In dimension four, there is a well-known parametrization of the orthogonal group via
a pair of unit quaternions. This has innumerable applications in physics and engineering
[15, 17]. For the symplectic group, Sp(4, R), there seems to be none. Note, by the ‘symplectic
group’, we refer to the real symplectic group, and not the similarly labeled group Sp(n), which
preserves the standard inner product on Hn (here H stands for the quaternions). The latter is,
of course, already defined via quaternions. It is the intention of this note to provide such a
quaternionic parametrization for Sp(4, R).

The representation obtained here also achieves the following tasks of practical utility:
(i) a test for positive definiteness of a symplectic, symmetric matrix which requires checking
two simple inequalities; (ii) a parametrization of symplectic, positive definite matrices which
can be used in applications; (iii) most importantly, an explicit procedure for obtaining the
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polar decomposition of a symplectic matrix, which requires no spectral calculations, but
which instead requires the solution of a simple 2 × 2 linear system. This can be used, for
instance, in applications where extracting the non-compact part of Sp(4, R) is needed; (iv) an
expression for the characteristic polynomial of a symplectic matrix, which can be used to find
an explicit formula for the minimal eigenvalue of a positive definite, symplectic matrix (this
is useful in applications such as quantifying the squeezing in Gaussian states).

For motivating the rest of the paper (in particular, the contents of the introductory section),
we assume temporarily some familiarity with the algebra ismorphism between H ⊗ H (the
tensor product of the quaternions, H, with itself) and the algebra of 4 × 4 real matrices,
denoted M4(R) [7, 11, 14, 17–19, 21, 22]. See section 2 for more details. Using this algebra
isomorphism, it would seem that to obtain a quaternion representation of an X ∈ Sp(4, R) a
logical approach would be to write out the conditions imposed on the quaternion representation
of an X ∈ M4(R) by the relation

XT J4X = J4,

where J4 is the defining matrix of the symplectic group (its quaternion representation is 1⊗j ).
However, this produces an immensely complicated system of equations. Indeed, if one were
to pursue this approach for the orthogonal group, i.e., write out the condition XT X = I in
quaternion form, one does not recover the pair of unit quaternions representation unless one
assumes a priori that the quaternions representing the matrix are decomposable, i.e., by an
element u ⊗ v ∈ H ⊗ H . That this is not an assumption follows from the fact that the
exponential map is onto SO(4, R). However, the corresponding statement for Sp(4, R) is
incorrect.

To understand, the approach taken in this work, we note that the initial suggestion that
one write out the quaternionic version of the condition XT J4X = J4 leads to something
tractable, provided one imposes the additional restriction that the original X be also real
symmetric. This is very useful since it is known that in the polar decomposition X = UP ,
of a symplectic X, both the orthogonal factor (U) and the positive definite factor (P) are
symplectic as well (see [8, 16, 20] for instance). For a variety of reasons, it is more
convenient to obtain quaternionic representations of symmetric and symplectic X and then
further refine these to obtain quaternionic characterizations of positive definite and symplectic
X. Characterizing symplectic, orthogonal matrices is simple. Combining the two one gets a
quaternionic representation of symplectic matrices. This is stated in theorem 3.2.

There are, of course, other global factorizations of the symplectic group, such as the Euler
(Cartan) and Iwasawa decompositions [2, 8–10, 24], which could have been used as starting
points for finding a quaternionic representation. But we found the polar decomposition as the
most useful, since the polar decomposition of a matrix has innumerable applications [12, 13].

It is appropriate at this point to record some history of the linear algebraic applications
of the isomorphism between H ⊗ H and M4(R). This isomorphism is central to the theory
of Clifford algebras [17]. However, it is only relatively recently been put into use for linear
algebraic (especially numerical linear algebraic) purposes. To the best of our knowledge,
the first instance seems to be the work of [14], where it was used in the study of linear
maps preserving the Ky-Fan norm. Then in [11], this connection was used to obtain the
Schur canonical form explicitly for real 4 × 4 skew-symmetric matrices. Next is the work of
[7, 18, 19], wherein this connection was put to innovative use for solving eigenproblems of
several classes of structured 4 × 4 matrices. Finally, in [21, 22], this isomorphism was used
to explicitly calculate the exponentials of a wide variety of 4 × 4 matrices.

The rest of this manuscript is organized as follows. In the following section some notation
and preliminary results on symplectic matrices, positive definite matrices and the algebra
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isomorphism between H ⊗ H and M4(R) are collected. The following section contains the
technical results in this work. Theorem 3.1 provides the quaternion characterization of positive
definite symplectic matrices central to this work. This is used in theorem 3.2 to provide a
quaternion representation of Sp(4, R). One technical tool in the proof of proposition 3.1
is that of squaring a symmetric, symplectic matrix. This is also a key ingredient in the
proof of theorem 3.3. This latter theorem provides an explicit technique to calculate the
polar decomposition of matrices in Sp(4, R), which requires no diagonalization. This is
summarized in an algorithm. Next a different perspective is provided on the paucity of
symplectic, symmetric square roots of XT X, for an X ∈ Sp(4, R). As a byproduct an explicit
formula for the characteristic polynomial of an X ∈ Sp(4, R) is obtained. The following
section considers applications to squeezing operations and to a key step in the computation
of Lyapunov exponents of linear Hamiltonian dynamical systems. In particular, an explicit
formula for the minimal eigenvalue of Gaussian covariance matrices is provided. The final
section offers some conclusions.

2. Notation and preliminary observations

The following definitions, notations and results will be frequently met in this work:

• M4(R) (also denoted gl(4, R)) is the algebra of real 4 × 4 matrices.

• J2n = (
0n In

−In 0n

)
. Sp(2n,R) denotes the Lie group of symplectic matrices, i.e., those

2n × 2n matrices, satisfying XT J2nX = J2n. sp(2n,R) is its Lie algebra, consisting of
real Hamiltonian matrices.

• If X ∈ Sp(2n,R), then X−1 = −J2nX
T J2n. Furthermore, if X ∈ Sp(2n,R) then XT is

also in Sp(2n,R).
• Essential use of the following theorem will be made in this work (see [8, 16, 20]):

Proposition 2.1. Let X be a real symplectic matrix, and let X = UP be its polar
decomposition, with P positive definite and U real orthogonal. Then P and U are also
real symplectic.

Remark 2.1. An analogous statement holds for the polar decomposition of a symplectic X
with orders of the factors switched. In other words, if X = QV is the polar decomposition
of a symplectic X, with Q positive definite and V orthogonal, then both Q and V are
symplectic.

See [20] for examples of other matrix groups for which an analogous statement holds. It
is worth recalling here that P is the unique positive definite square root of the positive
definite matrix XT X.

• For a polynomial P(x) = ∑n
i=0 aix

i , of degree at most n, its reverse is the polynomial
Prev(x) = ∑n

i=0 an−ix
i . In this work we will use the fact that the characteristic polynomial

of a symplectic matrix equals its reverse (see [20], for instance).

We next collect some definitions and results on real positive definite matrices. All details,
together with extensions to the complex positive semidefinite case, may be found in [12, 13].

• Definition 2.1. Let Y be a real positive definite matrix. A real square matrix Z satisfying
Y = ZT Z is said to said to be a square root of Y.

Square roots of positive definite matrices are not unique. However, if Z1 is a square root
of Y then Z2 is also a square root of Y iff there exists a real orthogonal matrix U such that
Z2 = UZ1.
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• Let Y be a real positive definite matrix. Then there exist real symmetric matrices H such
that Y = H 2. Clearly any such H is a square root in the sense of definition 2.1.

• Let Y be a real positive definite matrix. Then there exists a unique real positive definite
matrix P with Y = P 2. This P is an example of a real symmetric matrix whose square
equals Y.

Next relevant definitions and results regarding quaternions and their connection to real matrices
will be presented. Throughout H will be denoting the skew-field ( the division algebra) of the
quaternions, while P stands for the purely imaginary quaternions, tacitly identified with R3.

H ⊗H and M4(R): the algebra isomorphism between H ⊗H and gl(4, R), which is central
to this work is the following [7, 17–19]:

• Associate to each product tensor p ⊗ q ∈ H ⊗ H , the matrix, Mp⊗q , of the following
linear map from H to itself (viewed as a linear map from R4 to itself, by identifying R4

with H via the basis {1, i, j, k})
x → pxq̄. (2.1)

Here, q̄ is the conjugate of q. Extend this by linearity to all of H ⊗ H . For instance the
matrix of 2u1 ⊗ v1 + 9u2 ⊗ v2 is 2Mu1⊗v1 + 9Mu2⊗v2 .

This yields an algebra isomorphism between H ⊗ H and M4(R). In particular,
J4 = M1⊗j .

• Define conjugation in H ⊗ H by first defining the conjugate of a decomposable tensor
a ⊗ b as ā ⊗ b̄, and then extending this to all of H ⊗ H by linearity. Then Mā⊗b̄ =
(Ma⊗b)

T , i.e., quaternionic conjugation’s matrix analogue is matrix transposition.
Thus, the most general element X ∈ M4(R) admits the quaternion representation

a1 ⊗ 1 + p ⊗ i + q ⊗ j + r ⊗ k + s ⊗ 1 + 1 ⊗ t , with a ∈ R and p, q, r, s, t ∈ P . Indeed,
the first four summands are equal to their conjugate, while the remaining two are minus
their conjugate. Thus, the summand a1 ⊗ 1 + p ⊗ i + q ⊗ j + r ⊗ k is the symmetric part
of X, while the summand s ⊗ 1 + 1 ⊗ t is the anti-symmetric part of X.

• One can check by direct calculation, that all terms, except the a(1⊗1) term, have traceless
matrix representations. Hence trace of X is 4a. Expressions for p, q, r, s, t (which are
linear in the entries of the matrix being represented) are easy to find [18]. For instance, if
Y = X+XT

2 , then

q = 1
2 [(Y23 − Y14), (Y11 − Y22 + Y33 − Y44), (Y34 + Y12)].

3. Quaternion representations of Sp(4, R)

To develop a quaternionic representation of an X ∈ Sp(4, R), we invoke proposition 2.1.
Let X = UP be the polar decomposition of X. Since U is symplectic and orthogonal it

must, in fact, be special orthogonal. Obtaining the quaternionic representation of such a matrix
is easy [7]. It is given by q = u⊗ v, with u, v unit quaternions with the further restriction that
vj = jv. Hence, v = v0 + v2j , with v2

0 + v2
2 = 1.

We now obtain a quaternionic representation of P:

Theorem 3.1. Let X be a 4×4 symplectic matrix, with nonzero trace, which is also symmetric.
Then it admits the quaternion representation X = a1 ⊗ 1 + p ⊗ i + q ⊗ j + r ⊗ k, with
aq = r × p, p · q = 0 = r · q, and a satisfying the constraint a2 − p · p + q · q − r · r = 1. If
a = 1

4 Tr(X) �= 0, then X is symplectic iff aq = r × p and a2 − p · p + q · q − r · r = 1. Such
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an X is positive definite in addition, iff (i) a > 0 and (ii) 2a2 − 2(q · q) + 1 > 0. In particular,
a symmetric, symplectic matrix with a > 0, q = 0 is always positive definite.

Proof. The proof proceeds by equating the quaternion expansion of XT J4X to that of J4,
namely, with 1⊗j . Since for any X, the matrix XT J2nX is always skew-symmetric, one needs
to only calculate, only those terms of the form s ⊗ 1 and 1 ⊗ t , with s, t ∈ P . The remaining
will automatically be zero. Specifically, the expansion of XtJ4X is

(a2 − p · p + q · q − r · r)(1 ⊗ j) + (2r × p − 2aq) ⊗ 1 + (2p · q)1 ⊗ i + (2r · q)1 ⊗ k.

Hence, the stated conditions for symplecticity follow. Note that the vanishing of the second
term yields the condition aq = r × p. Thus, if a �= 0, then q = r×p

a
and this, of course,

ensures the conditions p · q = 0 = r · q.
Now X is positive definite, in addition, iff all coefficients ai of X’s characteristic polynomial

p(x) = x4 − a3x
3 + a2x

2 − a1(x) + a0 are positive (this follows from Descartes rule of signs,
for instance).

Since X is symplectic, p(x) equals its reverse. So a3 = a1 = 4a, a0 = 1. Now,
a2 = 1

2 [(Tr(X))2 − Tr(X2)]. But, from the expansion of X, it follows that the 1 ⊗ 1 term
in X2 is a2 + p · p + q · q + r · r . So, using 1 = a2 + q · q − p · p − r · r , we see that
a2 = 2(2a2 − 2(q · q) + 1). Hence the result follows. �

Remark 3.1. From the above theorem, we have a simple test to check if a real symmetric
matrix is symplectic and positive definite. Note, in particular, that only two inequalities
have to be verified for positive definiteness, in contrast to the general situation.
These conditions also yield an inequality free parametrization of such matrices, as
follows. Pick two vectors α, β ∈ R3. Define θ via tan(2θ) = 2αT β

βT β−αT α
. Define γ1 =√

αT α cos2(θ) + βTβ sin2(θ)−αT β sin(2θ), γ2 =
√

αT α sin2(θ) + βT β cos2(θ) + αTβ sin(2θ).
Set ci = cosh(γi), si = sinh(γi). Finally, define w1 = (α1 cos(θ) − β1 sin(θ), α2 cos(θ) −
β2 sin(θ), α3 cos(θ) − β3 sin(θ)], w2 = [α1 sin(θ) + β1 cos(θ), α2 sin(θ) + β2 cos(θ),

α3 sin(θ) + β3 cos(θ)]. Then the parametrization of symplectic, positive-definite matrices
is X = c1c2(1 ⊗ 1) + p ⊗ i + r×p

c1c2
⊗ j + r ⊗ k, with p = c2s1 cos(θ)

γ1
w1 + c1s2 sin(θ)

γ2
w2 and

r = c1s2 sin(θ)

γ2
w2 − c2s1 sin(θ)

γ1
w1. It is important to note that this is only a parametrization, and

does not provide the positive definite factor of the polar decomposition of a given symplectic
matrix.

From here we get the quaternionic representation of a symplectic X, which we record for
completeness.

Theorem 3.2. Let X be an element of Sp(4, R). Then there exist a, v0, v2 ∈ R,p, q, r ∈ P ,
and a unit quaternion u satisfying the constraints a2 − p · p + q · q − r · r = 1, q = r×p

a
,

a > 0, 2a2 − 2q · q + 1 > 0 and v2
o + v2

2 = 1, such that X admits the following quaternion
representation X = [u ⊗ (v0 + v2j)][a1 ⊗ 1 + p ⊗ i + q ⊗ j + r ⊗ k].

We now turn to the issue of computing these quaternions from the entries of X.
Assuming the positive definite portion of the representation is available, the calculation of
the factor [u ⊗ (v0 + v2j)] is amenable to the any technique which will yield the quaternion
representation of a matrix in SO(4, R). This ought to be folklore, but surprisingly the only
explicit record of this that we were able to find is in [4].

Next, consider computing the positive definite factor. It is the unique positive definite
square root of XT X. We will see below that there is a very explicit method for finding it,
which reveals some facts which are of interest in their own right. Specifically, recall from
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section 2, that any positive definite matrix is the square of a real symmetric matrix. The real
symmetric matrix is not unique, but one of these is the unique positive definite square root of
the positive definite matrix in question. Now, when the positive matrix is XT X,X ∈ Sp(4, R),
we know that the unique positive definite square root is also symplectic. Furthermore, being
positive definite its trace is positive. So, instead of looking at all possible real symmetric
matrices whose square is XT X, one needs to inspect only those which are symplectic and have
positive trace, in addition. One then finds the pleasant conclusion that there are only few such
candidates.

Theorem 3.3. Let X ∈ Sp(4, R). Then there are at most two (and, at least one) matrices H
which satisfy (i) H 2 = XT X; (ii) H is real symmetric and symplectic; and (iii) Trace(H) > 0.
One of these is precisely the unique positive definite square root of XT X, and thus the positive
definite factor in the polar decomposition of X. Furthermore, H can be found explicitly via the
solution of a simple linear system.

Proof. Let X ∈ Sp(4, R). Then so is XT and hence XT X ∈ Sp(4, R). Let
b1⊗1+c⊗ i +d ⊗j +e⊗k be its quaternion representation. Note, as XT X is positive definite,
b > 0, while c, d, e are pure quaternions. Let H be a real symmetric, symplectic matrix with
nonzero trace satisfying H 2 = XT X. Suppose H = a1 ⊗ 1 + p ⊗ i + q ⊗ j + r ⊗ k. Then
equating H 2 to XT X yields the system of equations

b = a2 + p · p + q · q + r · r

c = 2ap + 2q × r

d = 2aq + 2r × p

e = 2ar + 2p × q.

(3.1)

�

In addition, as H is symplectic, this system is augmented by conditions (i) a > 0; (ii) q = r×p

a
;

(iii) 1 = a2 + q · q − p · p − r · r .
The second equation in the system equation (3.1), together with aq = r × p, yields

q = d
4a

.
At this point it is convenient to divide the argument into two cases. The case q �= 0 and

the case q = 0. Note (as a �= 0) these are equivalent to the cases d �= 0 and d = 0 respectively.

The case d �= 0. Using, 1 = a2 − q · q + p · p − r · r , we find b+1
2 = a2 + q · q = a2 + d·d

16a2 .
This yields a quadratic for a2, namely

a4 − b + 1

2
a2 +

d · d

16
= 0. (3.2)

Note that the discriminant of the above equation is (b+1)2

4 − d·d
4 , which is easily seen to be

positive. Further, since its coefficients change sign both these roots are positive. One of these
roots must correspond to the positive definite square root of XT X, while the other cannot (due
to uniqueness). In view of the requirement 2a2 − 2q · q + 1 > 0, for positive definiteness, it
is easily seen that the larger of these two roots is the one to pick. This yields a and hence q.

To find r and p, one inserts the expression q = r×p

a
into the equations for c and e to find

c = 2ap +
2

a
[(r · r)p − (p · r)r]

e = 2ar +
2

a
[(p · p)r − (p · r)p].

(3.3)
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This would yield a linear system for the unknowns p, r in terms of the knowns c and e
provided we can express p · p, r · r, p · r in terms of e, c. To achieve this, first note that

c · c = 4a2p · p + 4‖q × r‖2 + 8a2p · (q × r)

e · e = 4a2r · r + 4‖p × q‖2 + 8a2r · (p × q).

Hence,

c · c − e · e = 4a2p · p − 4a2r · r + 4‖q × r‖2 − 4‖p × q‖2.

Next, since ‖q × r‖2 = (q · q)(r · r) and ‖p × q‖2 = (p · p)(q · q), one gets

p · p − r · r = c · c − e · e

4a2 − 4q · q
.

Using b+1
2 = a2 + q · q = 1 + p · p + r · r , we find p · p + r · r = b−1

2 . So, one gets a linear
system for p · p and r · r , in terms of already determined quantities. To find p · r , we note that
since a2 − q · q �= 0, one gets p · r = c·e

4(a2−q·q)
.

Inserting these values for p · p, p · r and r · r into equations (3.3) yields a linear system
for the vectors p and r,

c = αp + βr, e = βp + γ r (3.4)

with α = 2a + b−1
2a

+ e·e−c·c
a(4a2−4q·q)

, β = − c·e
4a2−4q·q , γ = 2a + 2p·p

a
= 2a + b−1

2a
+ c·c−e·e

a(4a2−4q·q)
.

The system equation (3.4) is invertible as the Cauchy–Schwarz inequality reveals that the
quantity αγ − β2 is at least 4a2.

Thus, we have found H.

The case d = 0. Now equation (3.2), when d = 0, has two roots, namely b+1
4 (which is strictly

positive) and 0. Thus, by picking a =
√

b+1
2 , q = 0, p = c√

b+1
and r = e√

b+1
, we find the only

H which is symplectic, real symmetric, with positive trace and which satisfies H 2 = XT X.
Thus, by uniqueness, H must be the unique positive definite square root of XT X.

We summarize the above discussion into an algorithm for finding the polar decomposition
of an X ∈ Sp(4, R):

Algorithm 3.1.

• (1) Compute directly XT X.
• (2) Compute the quaternion representation of XT X. This is guaranteed to be of the form

b(1 ⊗ 1) + c ⊗ i + d ⊗ j + e ⊗ k (with b ∈ R, c, d, e ∈ P ) since XT X is symmetric.
Furthermore, these quantities are linear in the entries of XT X.

• (3) Let H be a matrix which has positive trace, real symmetric and symplectic, and which
satisfies H 2 = XT X. One such H is the positive definite factor in the polar decomposition
of X. Let H, which is symmetric, have quaternion representation a(1 ⊗ 1) + p ⊗ i +
q ⊗ j + r ⊗ k (with a ∈ R,p · q · r ∈ P ). Steps 4–6 show how to compute a, p, q, r .

• (4) If d = 0, then compute a =
√

b+1
2 , q = 0, p = c√

b+1
and r = e√

b+1
. This is guaranteed

to be the positive factor in the polar decomposition of X.
• (5) If d �= 0, then let a be the positive square root of the larger of the two strictly positive

roots of the quadratic x2 − b+1
2 x + d·d

16 = 0. Define q = d
4a

. Find p, r by solving the linear
system of equations (3.4).

• (6) This yields H as the unique positive definite square root of XT X and thus the symmetric
part of the polar decomposition of X.

7
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• (7) Next compute XH−1, by using H−1 = (
DT −BT

−CT AT

)
, if

H = (
A B

C D

)
. The matrix XH−1 is symplectic and orthogonal, and thus will admit the

quaternion representation u ⊗ (v0 + v2j), with u a unit quaternion and v2
0 + v2

2 = 1.
• (8) To compute u, v0, v2 use the algorithm described in, e.g., [4].

Remark 3.2. If one is interested in computing the other polar decomposition, described in
remark 2.1, then one has to replace XT X by XXT in step 1, and replace XH−1 by H−1X in
step 7.

We give a different perspective on the ‘paucity’ of symplectic, symmetric square roots of XT X

when d �= 0.
Thus, suppose that H is a real symmetric, symplectic matrix with nonzero trace satisfying

H 2 = XT X, and suppose H̃ is another. Then, since H, H̃ are square roots of XT X (in the
sense of definition 2.1), there exists a real orthogonal matrix U with H̃ = HU . Clearly U
must be symplectic too. Further, the conditions H̃ 2 = H 2 and that H̃ be real symmetric are
both equivalent to

UH = HUT .

So, considering H as fixed we examine which symplectic orthogonal U lead to UH = HUT .
An elaborate calculation of UH and HUT , the details of which are omitted, reveals that
the only candidates for U = u ⊗ v are 1 ⊗ 1,−1 ⊗ 1,

q

‖q‖ ⊗ j or − q

‖q‖ ⊗ j . Thus, there

are precisely four symplectic, real symmetric square roots of XT X of which two have positive
trace, and the remaining two have negative trace. If H has positive trace, then it is easy to
see (e.g., by inspecting the 1 ⊗ 1 term in H̃ ) that of the remaining three candidates only the
one corresponding to U = q

‖q‖ ⊗ j can also have positive trace.
The omitted elaborate calculation of UH is also useful for finding an explicit expression

for the characteristic polynomial of a symplectic X. Write X = UP = α(1 ⊗ 1) + β ⊗ p +
γ ⊗ j + δ ⊗ k + s ⊗ 1 + 1 ⊗ t , where α is scalar and the β, γ, δ, s, t are pure quaternions.

Since its characteristic polynomial PX(x) equals its reverse, it is of the form PX(x) =
x4 + a3x

3 + a2x
2 + a3x + 1. Furthermore, a3 = −Tr(X) and a2 = 1

2 ((Tr(X))2 − Tr(X2)).
Clearly, then

a3 = −4α = −4(au0v0 + (Im u · q)v2). (3.5)

To find a2 one needs the trace of X2. A useful observation here is that for this
one does not need to calculate X2. Once X has been found the trace of X2 is simply
4(α2 + β · β + γ · γ + δ · δ − s · s − t · t).

Now an explicit calculation (which makes repeated use of the fact that u, v are unit
quaternions) reveals α2 +β ·β +γ ·γ +δ ·δ− s · s − t · t is the expression

(
v2

0 −v2
2

)[
q ·q +

(
u2

0 −
‖Im u‖2

)
a2 − 2(Im u · q)2

]
+ p · p + r · r − 2[(Im u · p)2 + (Im u · r)2] + 8au0v0v2(Im u · q).

Hence the expression for a2 is

a2 = 8a2u2
0v

2
0 + 8v2

2(Im u · q)2 + 2
(
v2

2 − v2
0

)[
q · q +

(
u2

0 − ‖Im u‖2
)
a2 − 2(Im u · q)2

]

− 2(p · p + r · r) + 4[(Im u · p)2 + (Im u · r)2]. (3.6)

The above calculations can be summarized in

Theorem 3.4. Let X ∈ Sp(4, R) be represented by quaternions as in theorem 3.2. Then its
characteristic polynomial is expressible as PX(x) = x4 + a3x

3 + a2x
2 + a3x + 1, with a3 and

a2 given by equation (3.5) and equation (3.6) respectively.

8
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4. Applications

In this section we consider potential applications of the previous sections.
We first note some immediate applications to the study of squeezing operations in quantum

optics. Let us begin with a brief overview of squeezing mostly adapted from the treatment in
[1–3, 23]. Given an n-mode continuous variable system evolving according to a Hamiltonian
which is quadratic in the position (q̂) and momentum (p̂) operators, its density matrix evolves
according to

ρ → U(S)ρU−1(S).

Here S stands for the symplectic matrix representing the evolution of the corresponding
classical system and U(S) stands for the metaplectic representation of S. Note U(S) acts on
an infinite-dimensional Hilbert space and S acts on R2n.

Next, let ψ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n). The noise or variance matrix of the quantum
system in state ρ is a 2n × 2n real matrix consisting of the second-order moments of the
anti-commutators of the components of ψ . More specifically Vij = 1

2 Tr(ρ(ψiψj + ψjψi)),
where ψk is the kth entry of ψ, k = 1, . . . , 2n. Here one assumes, without loss of generality,
that Tr(ρψk) = 0, k = 1, . . . , 2n. Note that some authors differ by a factor of two in their
definition of the entries of V . The diagonal entries of V are commonly called quadrature
noise.

V is a real symmetric positive definite matrix satisfying the further constraint that V + i
2J2n

is positive semidefinite. This constraint is an expression of the uncertainty relations.
For our purposes it is significant that, while ρ experiences an infinite-dimensional

evolution (specified by U(S)), the associated transformation of V itself is finite-dimensional
given by

V → SV ST .

Now the state of the quantum system is said to be squeezed if there is an U ∈ U(n) such
that there is a diagonal entry of UV UT which is strictly less than 1

2 . See [1], for instance, for
an operational interpretation of this criterion. Here U(n) stands for 2n × 2n real symplectic,
orthogonal matrices. The notation is justified due to the fact that this group of matrices is
isomorphic to the group of n × n unitary matrices. The work of [23] provides an elegant test
for characterizing whether ρ is squeezed or not. As per this test, ρ is squeezed iff the least
eigenvalue, l(V ), of V is strictly less than 1

2 . This is the so-called U(n)-invariant criterion for
squeezing.

There are some immediate applications of the results of the previous sections of this work
to this subject.

• First, one can parametrize all squeezing operations for two-mode systems. From the
polar decomposition it is clear that all such operations for n-mode systems are precisely
the collection of 2n × 2n positive definite symplectic matrices, denoted �(n) in [2, 3].
Indeed, if S = UP is the polar decomposition of S, then SV ST = UPV P T UT . As U is
orthogonal, the eigenvalues of SV ST are equal to those of PV P T . Thus, only elements of
�(n) can change l(V ), i.e., produce squeezing. In this regard, note that a parametrization
of the equivalence classes of �(2), under U(2) conjugation, is given in [3]. However,
the squeezing effect on a quantum state of two elements of �(2) belonging to the same
U(2) conjugacy class, will, in general, be different, cf [3]. While pre-multiplication
of an element of �(2) by an element of U(2) does not change l(V ), conjugation by
an element of U(2) can. Indeed, if S̃ = UPUT , with U ∈ U(n), P ∈ �(n), then
S̃V S̃T = UPUT V UPUT . Hence, the eigenvalues of S̃V S̃T are not, in general related to

9
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those of PV P T . Thus, the parametrization in remark 3.1, which is not a parametrization
of a U(2) orbit, is relevant for this application.

• Next given a specific S ∈ Sp(2n,R), corresponding to a specific quantum evolution, one
can attempt to extract the ‘amount of squeezing’ in it. This is precisely performing the
polar decomposition of S. Algorithm 3.1 does this for n = 2. Explicitly one computes
P and then the least eigenvalue of PV P T , where V is the noise matrix corresponding to
ρ(0), the initial density matrix.

• A third application to the same topic is to actually compute l(V ), for classes of noise
matrices. The characterization of positive definite symplectic matrices in theorem 3.1
allows us to do this in closed form for the so-called Gaussian noise matrices. Following
[2], these are noise matrices, V , which satisfy the further condition that 2V ∈ Sp(2n,R).
All such matrices, except I

2 , are squeezed. First, given a physically realizable noise
matrix, theorem 3.1 lets one determine if it is Gaussian, when n = 2, because it detects
if 2V is symplectic and positive definite. Next, putting u = v = 1 in the expression for
the characteristic polynomial given by theorem 3.4 yields a polynomial whose roots can
be explicitly computed. For reasons of brevity we do not list these roots, but we note
that it is not merely the fact that the characteristic polynomial is quartic, but the fact that
q = r×p

a
which facilitates this explicit determination.

This leads to the following expression for the minimal eigenvalue, l(V ). There are
three cases to consider.

– First suppose that r × p �= 0. Then, if p · p + r · r −
√

(p · p + r · r)2 − ‖r × p‖2 �
2‖r×p‖2

a2 , one finds

2l(V ) = a − ‖r × p‖
a

−
√

p · p + r · r + 2
√

(p · p)(r · r) + (p · r)2.

– If r × p �= 0 and 2‖r×p‖2

a2 � p · p + r · r −
√

(p · p + r · r)2 − ‖r × p‖2, then

2l(V ) = a +
‖r × p‖

a
−

√
(p · p + r · r) − 2

√
(p · p)(r · r) + (r · p)2.

– Finally, if r × p = 0, one gets

2l(V ) = a − (p · p + r · r) =
√

1 + p · p + r · r − (p · p + r · r).

Note the condition q = 0 (forced by r × p = 0) does not preclude V + i
2J4 from being

positive semidefinite, inasmuch as the vector q does not involve the (1, 3) and the (2, 4)

entries of V .
A similar analysis can be performed for the effect of a squeezing transformation on

other noise matrices. In general, if S represents an active squeezing operation and V is
the noise matrix of a state, then SV ST will only be positive definite, but not symplectic.
Nevertheless, its smallest eigenvalue can be explicitly computed, using quaternions. Since
this expression is cumbersome, we omit the details. Of course if V is also Gaussian, then
the above analysis can be used verbatim for this purpose.

The next application we discuss is the work of [10] on a key step in the computation of
Lyapunov exponents for linear Hamiltonian dynamical systems.

Specifically, let ψ = (q1, . . . , qn, p1, . . . , pn) be the state of a classical system with n
degrees of freedom. Here qi and pi are the canonical position and conjugate momentum
coordinates. Let H be a quadratic form in the components of ψ , and let S be the 2n × 2n real
symmetric matrix representing this quadratic form. The evolution of the system is prescribed
by

dψ

dt
= −{H,ψ},

10
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where {, } stands for the Poisson bracket. Then, as H is quadratic, the state ψ satisfies

ψ(t) = M(t)ψ(0),

where M(t) = etJ2nS is a symplectic matrix. Now form the matrix 	 = limt→∞(MMT )
1
2t .

The Lyapunov exponents are the eigenvalues of 	. Note one can just as well work with MT M .
MMT satisfies dMMT

dt
= J2nSMMT − MMT SJ2n.

The authors now make the observation that every symplectic matrix can be written in the
form

M = eJ2nSa eJ2nSb ,

where Sa is a symmetric matrix which anti-commutes with J2n, while Sb is a symmetric
matrix which commutes with J2n. Now both J2nSa and J2nSb are Hamiltonian matrices. The
condition that Sa anti-commutes with J2n renders J2nSa also symmetric, as is easily verified.
Similarly J2nSb is also anti-symmetric. But then eJ2nSa is simultaneously symplectic and
positive definite, while eJ2nSb is symplectic and orthogonal. Thus, this is precisely the polar
decomposition of M (though the authors do not mention this explicitly).

From here it follows that MMT = e2J2nSa . The authors argue that it is better to work
directly with e2J2nSa , for the purposes of computing Lyapunov exponents. For instance,
e2J2nSa has fewer parameters than M. The authors study the n = 1 case. They represent
e2J2nSa parametrically and then relate the Lyapunov exponents to these parameters. They then
derive, for certain Hamiltonians, nonlinear differential equations for these parameters from
the differential equation for MMT above.

One can use the results of the previous sections for the n = 2 case. First, one can
represent e2J2nSa parametrically by using remark 3.1. Then using the method in the squeezing
example before, derive explicitly the eigenvalues of e2J2nSa as closed form expressions in
these parameters. This yields formulae for the Lyapunov exponents in terms of these
parameters. Then one could derive a system of coupled nonlinear differential equations
for the six parameters. The derivation of these differential equations, which is very much
dependent on the quadratic Hamiltonian, is beyond the scope of this work. It will, of course,
be significantly more nonlinear than the n = 1 case.

In view of this, an alternative (depending on the Hamiltonian of the system) would
be to solve the linear differential equation for M(t) directly and then compute its polar
decomposition using algorithm 3.1. This would yield 	, whose eigenvalues can be found
analogously to the application to squeezing discussed before in this section. For instance, if
J2nS is either symmetric or skew-symmetric, then it is possible to solve for M(t) in closed
form.

Note that, since Hamiltonian matrices are not normal, J2nSa and J2nSb are not the
symmetric and skew-symmetric parts of, tJ2nS, the logarithm of M(t). Thus, in other
applications which require the non-compact part of a specific symplectic M, one has to resort
to algorithm 3.1.

It is easy to see that any representation of the non-compact part of the symplectic group
may be analogously used to compute Lyapunov exponents of linear Hamiltonian dynamical
systems. In [9], the author proposes the use of the Iwasawa decomposition to compute this
non-compact part. Since the Iwasawa decomposition involves more factors than the polar
decomposition, it seems more economical to use the latter decomposition.

5. Conclusions

This work provides a quaternionic representation for the symplectic group Sp(4, R). One of the
principal applications is that, in attempting to provide explicit formulae for this representation,
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one obtains a very simple and explicit technique for finding the polar decomposition of matrices
in Sp(4, R). Since the positive definite factor in this decomposition is one representation of
the non-compact part of the symplectic group, this circumstance can be used to address
applications where this factor is relevant [1–3, 9, 10, 23]. There are other applications which
we did not dwell upon here. Using the representation here one can constructively obtain the
Euler–Cartan decomposition of Sp(4, R) (see [2] for the definition of this decomposition).
Likewise the so-called symplectic Procrustes problem, i.e., the problem of finding U ∈ U(2),
given X1, X2 ∈ Sp(4, R), such that the Frobenius norm of X2−UX1 is minimized, is explicitly
solvable using algorithm 3.1.

Finding similar quaternionic representations of matrix groups preserving other bilinear
forms in dimension four is an interesting question. It remains to see whether these lead
to as elegant a set of expressions, such as those for the symplectic group. Indeed, it is
no exaggeration to say that a pivotal role in the results here is played by the fact that the
q term, in theorem 3.2, is essentially the cross product of the r and p terms. It seems
implausible that a similar geometric simplification occurs for other bilinear forms. Extending
such representations to higher dimensional symplectic matrices is also open. Quaternionic
representations are, of course, limited to dimension four, just as there is no similar extension of
the pair of unit quaternions representation to higher dimensional orthogonal groups. However,
one can hope that in conjunction with either numerical techniques for the symplectic group
[6], or methods of Clifford algebras [17], these results can be extended to higher dimensions.
However, since the fact that q is essentially the cross-product of r and p was crucial, it seems
unlikely that Clifford algebra based representations would be as amenable to calculating the
polar decomposition in closed form in higher dimensions.
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